IP Route Lookups as String Matching

Austin Donnelly and Tim Deegan
University of Cambridge
Computer Laboratory
Cambridge, CB2 3QG, U.K.
E-mail: {Austin.Donnelly, Tim.Deega@cl.cam.ac.uk
Tel: +44 1223 334600
Keywords: longest prefix matches, finite state automata

Abstract In Section 2, we outline the basic properties of the
longest prefix match problem; in Section 3.2 we show how
An IP route lookup can be considered as a string match- it can be re-stated in terms of an FSA string matching prob-
ing problem on the destination address. Finite State Au- lem. Section 4 covers how the states in an FSA can be min-
tomata (FSA) are a flexible and efficient way to match imised, leading to the much-used basic trie structure with
strings. This paper describes how a routing table can be route aggregation. Finally, Section 5 makes observations
encoded as an FSA and how, through a process of stateabout the problem in general, and suggests further optimi-
reduction, we can obtain an optimal representation. This sations that may be possible.
gives insights into the basic properties of the longestipre

match problem. 2. Longest prefix matches

) The basic IP route lookup problem can be stated as fol-
1. Introduction lows. We have a routing tablg which maps each subnet
to a forwarding equivalence class (FEC). An FEC defines
Ever since the introduction of classless inter-domain how the router will handle a particular class of packets. It
routing (CIDR), researchers have worked to optimise the may specify the outgoing queue/interface, link-layer next
process of doing a longest prefix match on IP addresses tdop details, etc. Given a packet with destination IP address
discover the subnet to which they belong. a we need to find the subnet R the address is within, and
Many finely-honed schemes exist, the trend being to de-thus the FEC which dictates how the packet should be for-
sign data structures which fit entirely in a modern worksta- warded (if at all). By saying an IP addressughina subnet,
tion’s caches [3], or algorithmswhich are easy to implement we mean that the subnet is a prefix of the IP addres&. If
in hardware [5]. includes multiple subnets which are all prefixes:pive se-
Many of these schemes make use of tries, a construcdect the longest subnet in order to disambiguate the match.
tion similar to a tree but where the search key is encoded inThis is why IP lookups are callddngest prefix matches
the path taken to reach a particular node, rather than in the We can consider the subnets stored in a routing ta-
nodes themselves. The trie data structure seems intyitivel ble to be strings of binary digits. The network number
the correct representation to use, but no authors have actuis the value of the string as a binary number, and the
ally proved that itis optimal. In this paper, we show how the length of the string gives the netmask length. For example,
trie data structure arises naturally from the minimisatibn the 16-bit subnet 128.232.0.0M&ould become the string
an FSA corresponding to a routing table. We do not offer a 1000000011101000.
faster route lookup scheme — instead we show that current A trie can be used to store these subnet strings, allowing
practice is the best possible one in a novel way. common prefixes to be factored out as much as possible.
This paper does not consider multi-dimensional range The edges of the trie are labelled with a member of the al-
m_atChmg OI’_ Iayer_-4 rOPt'Ug- Some of thes_e schemes use 1The number following the slash in the notatianb. c. d/ n gives the
tries as their basic building blocks [9], while others use number of contiguous 1's in the netmask.
completely different techniques [10].

phabet the keys are over. As we use subnet strings as keyms particular), and a slight decrease in the number of large
this means each edge is labelled either witha 1 ora 0. networks (e.g. /8), presumably due to large networks be-
Nodes in a trie arenarkedif the labels on the path from ing split to re-use the addresses in smaller netblocks.i?4-b
the root to that node form a valid key. Since we are storing networks are the fastest growing netmask length, with over
a routing table in the trie, we note the FEC the subnet is 17000 new entries of that length appearing during the pe-
mapped to in the node itself. riod from May 1999 to August 2000 — almost a factor of
Figure 1 shows an example. Black nodes mark the endseven more than the next largest-growing size (/23).
of a valid path from the root. The trie in question stores the
prefixes 00, 010, 100, 1, and 111. Note that 1 is a prefix

Netmask length distribution

100000 ‘ ‘
of 100, so the address 101 would be matched by the shorter -
prefix 1, while the address 100 would be matched by the
longer 100 prefix. Boooo | o
] [
= |
& 1000 | |
]
£
@ 100}
=
g
)
_ _) i g 10f
Figure 1. A trie storing 5 prefixes °
If we are to distinguish betweel subnets then there 1 5 10 15 20 25 30 35
must beN marked nodes in the trie, and the minimum depth netmask length
of the trie will beO(log(N)) nodes. We expect that in ac- Figure 2. Netmask length distribution

tual fact the trie will be deeper since few internal node$ wil
be marked, and the trie will not be balanced.

To verify this assumption, a trie was built from data taken 3 Mapping to an FSA
from the route-views projeton August 22 2000. It shows

that the trie is in fact quite unbalanced, mainly due to the 14 |p route lookup problem is similar to a few other
multicast address_space (binary pr_efix 1110) being Sp_arselyproblems. So far, it has been stated in terms of finding the
pppulated. The minimum and maximum path lengths in the longest possible match. It can also be re-stated as follows:
trie were 8 and 32, corre_spondlng tp the shortest and longestpnets are intervals on the integers. IP addresses afe inte
netmasks_ encpuntered in the routm_g table. There were 66y, Doing a route lookup is finding the smallest interval
routes to individual machines (i.e. with a netmask length of 2 particular integer is within. This is the approach taken

32). o in [6], in which a lower bound of2(loglog(N)) pointer
The full pgth length dls'Frlbutlonlsgwen inFigure 2. The yoreferences is proved. It should be noted that [6] deals
path length is on the x-axis, and the number of OCCUITENCESyith 5 simplified problem, since they do not allow intervals

in the ro_utg database is p'Otteﬁj ona log s%ale on the Y-aXIStq enclose other intervals. The authors of [5] generalige th
F_rom th's_’ it can be seen that just over 65% O_f paths n thetechnique to multiple dimensions with arbitrary overlaps.
trie are either 24 or 16 edges long. Clearly, this is not a flat

distribution of strings in the trie, so it should be possible

to take advantage of this skew in the distribution in order

to minimise the number of pairwise comparisons needed to
be made. The authors of [10] used this distribution to their
advantage by checking the hash tables for 16 and 24 first
before progressing onwards.

Mapping a faulting virtual address to a page table entry
is also a similar problem, where the most specific matching
entry should be used.

Another way of stating the problem is to map it onto the
string matching problem. By creating an FSA from the rout-
ing table then minimising it, a comparison trie is built wiic
includes optimisations specific to the particular routiag t

_ As a somewhat unrels_tted aside, looking back at route-po jp, question. The remainder of this paper shows how
views snapshots from a little over a year ago shows a gen-g o, 5 tomata may be constructed, and how their minimi-
eral increase in the number of small networks (/18 to /24 (i0ns degenerate into binary tries

2htt p: // www. ant c. uor egon. edu/ r out e- vi ews/
We filtered out all routes from one ISP who was inadverterdiyeatis- 3.1. Routing table representation
ing spurious prefixes. In particular, they claimed conwitgtto 60 con-
tiguous class A (/8) networks. The addresses in questioreasved by . .
IANA, not owned by the ISP. Furthermore, they are unroutallether We introduceX = {0, 1}, the alphabet over which ad-
major exchanges. We have contacted the ISP to determinatise c dresses and subnets are stringsis the set of all FECs,

plus a special FEG used to denote the lack of routingin- 2, 3 and 4 are all forwarded according to the same policy:
formation — packets “forwarded” according to policyare FEC 1. Later, we show how these routes may be aggregated
simply dropped, since they are unroutable. Our routing ta- into a single entry.
ble R is defined as a set of 2-tuples of the fofm f), where
v € Y* is a subnet string, anfl € 7' is the FEC associated subnet0 (0 0 , fec 2)
with the subnet. R may contain a default route, f5), subnet1(0 1 0 ,fec0)
wheres is the empty strlng_ andl; is the de_zfault FEC. subnet 2 (1 fec 1)
There aren = |R| routing table entries, and for con-
venience we refer to th&h routing table entry a&;, f;), subnet3 (1 0 0 , fec 1)

where0) < i < n. We definey;[j] € ¥ to be thejth subnet4(1 1 1 ,fecl)
character in theth routing table entry’s subnet string if
0<i<nAl< < Iengtr(ui), and_L otherwise. Note Figure 3. An example routing table

that: and;j count from 0, not 1.
Every bit in the routing table becomes a transition into
3.2. FSA construction a fresh state in the FSA being constructed, as shown in
Figure 4. Accepting states are shown with an extra cir-

A non-deterministic FSA can be represented as a 5-tuplecle around them; initial states have a wedge to their left.
(S,%,1,A,T), whereS is the finite set of stateg; the fi- Note that this is a single non-deterministic FSA with multi-
nite alphabet/ C S the set of initial (or start) stated, C S ple start states — symbol matching occurs in parallel.
the set of accepting states, dfidC S x ¥ x 5, the transition
relation. Our FSAs include an extra propefty,c A x I,

a total function which maps every accepting state to a FEC
in R.

The FSA is said to accept a stringif, starting in any
statei € [/, it consumes successive symbolszomoving
from state to state according to the transition relationiand
left in a statex € A (i.e. an accepting state) with no further
symbols ofz remaining. If at any stage there is no possible
transition for the input symbol, then the strings normally
considered rejected by the FSA.

For easy of reference, we name states sthere both
andj are cardinals. Clearly it is possible to encode names
of this form as a single cardinal, for examplg;st 27 x 37.

The non-deterministic FSAJ corresponding to the routing
table R is then composed of:

o
o

)

)o

=

)

a
GO
®

)o
io

QG

@@
)H

66

)H

)H

BB OE
®

Figure 4. Initial FSA, M
¢ the alphabet = {0, 1},
) This non-deterministic finite state machine can be used
o the set of accepting states= {st ; : (v;, fi) € R A to do IP route lookups. The destination IP address of an

j = length{u;)}, incoming packet is matched from MSB to LSB and if an
o the set of state§ = {st; : 1;[j] L} U A, accepting state is reached, the pack_et has been sucagssfull
’ classified. Since there is one accepting state per subeet, th
o the set of initial state$ = {st; o : (v, f;) € R}, state can be mapped usirigto the forwarding equivalence

)) class the packet belongs to. Failed matches are rejected as
o the forwarding mappingV = {(a,f) : « € A A unroutable.

(Fi,jra=st;)A(vi fi) € RAfi= [} There are 4 problems with the automaton as constructed:

¢ and the transition relatio = {(¢s,¢,qq) : 3i,7 :

; P1 It is non-deterministic, and therefore must be deter-
gs =St ; € SAc=v[jl #L Ngga =St j11 € ST

minised before it can be run.

As an example, consider the routing table in Figure 3. p2 |t matches the strings in the routing table exactly, how-
This table contains five subnet prefixes and their associated gyer the strings are meant to be prefixes. We assume

FECs. Each individual bit is addressablegg], so for ex- that every symbol in the input string must be consumed
amplew, [0] has the value, while»[0] is 1. Notice subnets by the FSA in order to match.

P3 It does not “backtrack” on failure to find a potential Minimisation of an FSA is a topic already covered amply
previous match. In our example, this means it would in the literature [4], with [11] providing an especially ale
reject the string 110, when it should accept it as being categorisation of the different algorithms available.
part of subnet 2. There are two main ways of minimising an FSA: Brzo-

o zowski’'s algorithm [2] and those based on subset construc-

P4 Because minimisation only preserves the languagejon techniques, effectively calculating an equivalenee r

matched, accepting states may be merged togetheraiinn hetween the original states and the minimised FSA's

This is a problem since we rely on knowindiichac- gates such that states that are members of the same equiva-
cepting state caused an address to be matched in ordgLce class are indistinguishable.

to find the forwarding information frorf’. Any means of minimisation is acceptable, indeed, the

S o . entire reason for encoding IP route lookups as an FSA is
The process of determinisation identifies states which are o

Co o ; . specifically to reduce the IP route lookup problem to a pre-
indistinguishable and merges them into a single new state.

Two statesy, andq; are indistinguishable if an input string viously solved one.
leading from an initial state tg, could also lead from an
initial state tog;. In the example in Figure 4, states st
and st ; could be merged, as could stateg stst ; and

st ;. Sinceqy andg; may themselves be initial states, all
initial states are equivalent, and may be merged. The resul
of determinising our example FSA is shown in Figure 5. A
more formal definition of determinisation is given in Ap-
pendix A.

4.1. Protecting accepting states

Since minimisation preserves only the language ac-
{:epted, we must encode the forwarding information present
in W in the language itself. We do this by extending the
alphabet to include extra symbols we dalbelling letters
Each memberf of F' has an associated labelling letier
which we write ag = £(f). We also add some extra states:
a, which will eventually become the only accepting state in
the automata; and a state for egchk F which “eats” extra
0 or 1 symbols, writterf (f). Theseeat-statesare needed
to correctly match entries in the routing table as prefixes.

We will transform each accepting state into two states
connected by the labelling letter appropriate to the old ac-
cepting state. The first state is the eat-state for the FEC in
guestion, the second is alwaysln effect, we are changing
the language we want to accept from IP addresses to IP ad-
dresses each appended with the labelling letter apprepriat
toits FEC. By tagging the old accepting states with labgllin
letters, we only allow the merging of two paths through the
FSA if they both lead to the same FEC (i.e. they are indis-
tinguishable from a routing point of view).

More precisely, the eat-states are defined by extending
P2 and P3 are really aspects of the same problem: they. geterminised/s to produceM’ as follows:
transition relation is not total. By ensuring that all state

Figure 5. FSA after determinisation

have a transition defined for each symbotinve make the o X =X U{L(W(a)):aeE A},
transition relation total, and there is no ambiguity coneer :
ingmatCheS. o S :SU{OZ}U{g(f) fEF}
_P4 may be solved bgrotec_tingthe_accepting _states from o' =1,
being merged as described in Section 4.1. This can be done
at the same time as the transition relation is made total. o A=A,
L] W/ = W,

4. Minimisation
3 T/ =TU j}oop U j}abel-

In a determinised FSA each non-accepting state corre- whereTi,,, = {(E(W(a)), ¢, £(W(a)))
sponds to a bit-compare operation, so in order to minimise 1 and Y

packet the nUber of stetes n the FSA for & routing table 170 = HEWV (@) LOV@)) ca €).
P ' 9 Ti,0p addresses problem P2 (match as prefixes) by

should be minimised. adding transitions from all the eat-states looping back to

ca€ANceE

themselves on symbols 0 and 1,,; adds a transition 0
from each eat-state on its associated labelling lettereo th
« state, in order to ensure that the final symbol in every ac- / ‘@
cepted string is a labelling letter.

To solve problem P3 (longest prefix match), we apply
a depth-first walk of\/’ to generate a new FSA/” with
additional transitions which fully specify the behaviodr o
the automaton on failure to match. This depth-first walk is
defined by the recursive algorithm given in Figure 6.

L(fec2)

L(fecO)

1. totalise(f, ¢):

2: if g€ A then N 0 L(tecd)
3: f = W(q)

4: endi f

5: add (¢,L(f),«) to T

6: for ¢in {0,1} do

7: if J(¢,¢c,90) €T then

8: totalise(f, qa)

o: el se Figure 7. FSA after protection, M"
10: add (¢,¢,&(f)) to T

11: done

4.2. Minimisation details

Figure 6. Algorithm to extend transition rela-

tion The FSA M’ resulting from the procedures given in

Section 4.1 is deterministic but not total (remember the al-
phabet has been grown). Any minimisation algorithm may

The total i se algorithm keeps the current best- be used, but for concreteness, we use Brzozowski's algo-
matching FECf which is used to fill in missing transitions. rithm [2]: determinise, reverse, determinise again, and fi-
It also keeps track af, the current state it is processing. The nally reverse again, arriving &t"”.
algorithm is started witlhy set to the start state of the FSA Figure 8 shows the result of minimising our example.
andf set to the special FEG used to denote an unroutable The state names have been mostly removed since their rela-
packet. tion to the original names present in Figure 4 is tenuous.

As thet ot al i se algorithm walks the FSA graplf,is
updated each time an accepting state is traversed, and be- 0 %0
cause the walk is depth-firgtis always the longest match-
ing FEC. It is used in line 10 to add missing transitions
out of the current state into the appropriate eat-state for
the longest matching FEC, where extra Os and 1s may be
safely consumed before finally matching on the labelling
letter. Line 5 ensures the match may terminate early.

After being processed byotal i se, the FSA is
changed so the only accepting state is

To summarise: the routing tablg is encoded as an
FSA by building the naive non-deterministic F3A as de-
scribed in Section 3.2}/ is then determinised, and the new
statesy and the eat-states added as specified above, giving _ o
M’. Finally, thet ot al i se algorithm is run on the au- Figure 8. FSA after minimisation, =~ M"
tomaton, andy made the sole accepting state to produce
M?". Figure 7 shows how our example looks at this stage. i
This (ugly-looking) FSA is now safe to minimise. 4.3. Removal of protection

Finally, now thatM/”’ has been minimised, the labelling
letters can be removed to yield a deterministic automaton

M’ with the original alphabet, and a corré&t’’ set map- the LC-tries proposed in [7] and in the controlled prefix ex-

ping accepting state to FEC. pansion scheme [8]. This would correspond to expanding
This is done as follows: the alphabet to include symbols composed of multiple bits,
e.g. ¥ = {00,01,10,11}. Being able to change the al-
o X =1{0,1}, phabet on a per-node basis would give the ability to capture
o S = S | {a}) the semantit_:s of an LC-trie, Whe_re the branching factor is
potentially different at each level in the trie.
o I =" If all transitions out of a state lead to the same destination
state, this indicates that the bit being tested at this joosit
o A" =A{q: (¢, L(f),0) ET" N[€T #w}, in the IP address is not significant in determining the FEC.

This information may be useful when generating hash func-

W ={(e.0) (0. L(f).0) €T N € F #w}, tions from IP addre;/s to FEC, since ?ncluding g'Jsuch bits in
o T =T" 1{(qs,¢,qq) : qa = a}. the hash does not help in discriminating between FECs. In

Patricia-style trie representations [1], these bits aneigd

That is, a state is accepting if there was a labelling letter by the “skip” property.

transition out of it (and it wasn’t (w)). For each accepting We note that the constructed matcher is tailoredpara

state, the¥""" relation gives the FEC associated with that ticular routing table. The concept of taking advantage of the

state by using the labelling letter to find out which it was. structure inherent in a particular routing table is a powlerf
This produces the final, optimal, FSH'”. For our ex- one.

ample, the result is shown in Figure 9. Another technique inspired by the comparison tree re-

sulting from the minimised FSA might be a hardware im-

0 %0 plementation. By building the comparison tree in a field
1 — programmable gate array (FPGA), data can be switched at
— @ * high speed. Each node in the FSA is implemented as a one-
0 @ \ 10 bit decoder, and the routing table is expressed in the inter-
/ 0 Q @7 connections between these decoders. As each state in the
\,@4 » FSA is a test of a particular bitin the destination IP address
>© & 1 the appropriate bit is applied to the decoders at each level
1 in the tree, thus selecting a path through the tree to the out-
{‘ o/', put. There is a per-packet setup delay while the destination
@ address is presented to the comparison tree and the gates
f settle to enable the appropriate path through the tree to the

output, but after this the remainder of the packet data can be
sent at a rate limited only by the propagation delay through
the tree. When the routing table changes the FPGA needs to
be re-programmed with the new tree. Sadly, current FPGA

) o technology is unsuitable for this sort of design due to limi-
duces an FSA with provably minimal number of states tations on their internal interconnection networks; tlossl

(?ete e.g. [11] f%r z: proqu). Since in our: framﬁworkiheach not preclude a custom FPGA designed with this use in mind.
state corresponds o a bit-compare, We have Snown the min- - ¢ yper \work includes investigating other interesting

imal sequence of bit compares_needed _to classify an IP aOI'transforms on the routing table while it is encoded as an
dress. Notice the strong similarity to a trie data structure

fact, minimisation of an FSA as described here seems tobe ~

equivalent to a trie with route aggregation performed: the .

entries in Figure 3 for subnets 2, 3, and 4 have been merged®- Conclusion

since they share a common prefix and all route to the same

Figure 9. Final optimal FSA, M’

M"" is optimal because the minimisation algorithm pro-

FEC. We have shown how the process of doing an IP route
lookup may be re-phrased as a string-matching problem.
5. Observations We have applied well-known results from the field of fi-

nite state automata to show how the optimal string matcher

We h idered th h | inale bit specialised for a routing table may be constructed. We note
¢ have considered Ine case where only a singie bit may, . similarity to binary tries currently in use. This gives u
be compared at a time. Major speedups are possible by

_ . o . _confidence that binary tries are in fact the best way of doing
comparing multiple bits in parallel, as done for example in IP route lookups if restricted to single bit compares.

We do not consider using FSAs themselves for route
lookups to be a practical technique — the minimisation pro-
cess tends to be exceedingly expensi€2!5!). For a re-
cent backbone routing table with around 68000 entfigls,
is approximately 205000 after determinisation, leading to
prohibitively expensive runtime costs. The value of thaide
lies in the insights observable from this novel perspective
on the inherent nature of the longest prefix match problem.

A. Appendix: Determinisation

Given anon-deterministic FSA = (S, 2,1, A, T), the
deterministic FSAV' = (5', X/, I’, A’, T") which accepts
the same language a¢ is defined as follows:

S ={Q : @ C S}. The new set of states is the
powerset of the original set of states.

¥ = ¥. The alphabet is unchanged.

I' = {I}. The new start state is the set containing the
set of start states.

A =1Q €5 : 3¢ € QAqge A}. Anew state is
accepting if any of its constituent states was accepting.

T = {(;acaQ/d) /d = {qcl : El(Js S Q;/\
(¢s,¢,qq4) € T'}}. There is a transition fror@’, to @,

in the new FSA if there is a transition i from any
constituent state af), on the same symbol, in which
case(’, is composed of all the states reachable from
(), on consuming input symbel

This is calledsubset constructigrsince the states in the
new FSAM' are subsets of the stateslif. This means that
determinisation usually results i/’ having many more
states thard/ .

References

(1]
(2]

(3]

[4]

(5]

J. C. BaysThe Complete PATRICIA&hD thesis, University
of Oklahoma, 1974.

J. A. Brzozowski. Canonical regular expressions andi-min
mal state graphs for definite events.Miathematical theory
of Automatavolume 12, pages 529-561. Polytechnic Insti-
tute of Brooklyn, Polytechnic Press, N.Y., 1962.

M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
Forwarding Tables for Fast Routing Lookup£omputer
Communication Review (ACM SIGCOMM’'92)/(4):3-14,
Oct. 1997.

J. E. Hopcroft and J. D. Ullmanintroduction to Automata
Theory, Languages, and ComputatiorAddison-Wesley,
1979.

T. V. Lakhsman and D. Stiliadis. High-Speed Policy-
based Packet Forwarding Using Efficient Multi-dimensional
Range Matching Computer Communication Review (ACM
SIGCOMM'98) 28(4):203-214, Oct. 1998.

(6]

[7]

K. Mehlhorn, S. Naher, and H. Alt. A lower bound on the
complexity of the union-split-find problemSIAM J. Com-
put, 17:1093-1102, 1988.

S. Nilsson and G. Karlsson. Fast address lookup forner
routers. Ininternational Conference of Broadband Commu-
nications 1998.

[8] V. Srinivasan and G. Varghese. Fast address lookupgusin

controlled prefix expansionACM Transactions on Com-
puter Systems (TOCS)7(1):1-40, Feb. 1999.

[9] V. Srinivasan, G. Varghese, S. Suri, and M. WaldvogektFa

[10]

[11]

and Scalable Layer Four SwitchingCcomputer Communi-
cation Review (ACM SIGCOMM'98p8(4):191-202, Oct.
1998.

M. Waldvogel, G. Varghese, J. Turner, and B. PlattnealS
able High Speed IP Routing Lookup&omputer Commu-
nication Review (ACM SIGCOMM'97P7(4):25-36, Oct.
1997.

B. W. Watson. A taxonomy of finite automata minimization
algorithms. Technical Report 93-44, Faculty of Mathemat-
ics and Computer Science, Eindhoven University of Tech-
nology, 1993. ISSN 0926-4515.

